Linear logic proofs and processes in Petri nets

نویسندگان

  • Jean Fanchon
  • Nicolas Rivière
  • Brigitte Pradin-Chézalviel
  • Robert Valette
چکیده

Equivalence between reachability in Petri nets and provability of certain sequent of linear logic has been proven in various ways. This work relates linear logic proofs based on the work of 13] to processes of Petri nets: we prove that from a canonical proof tree, an quivalentt nite process can be derived and reciprocally that for each nite process, annequivalentt canonical proof tree can be constructed. One of the main contributions of this article is that the decidability and eeectiveness of linear logic se-quent calculus in the multiplicative fragment used here can be used for determining the nite processes of any Petri net. RRsumm L''quivalence entre accessibilitt dans les rrseaux de Petri et prouvabil-itt d'un certain ssquent de logique linnaire a tt prouve de diiirentes maniires. Ce travail porte sur les relations entre des preuves en logique linnaire basses sur 13] et les process de rrseaux de Petri. Nous prouvons qu'' partir d'un arbre de preuves canonique, nous pouvons ddriver un process ni quivalent et rrciproquement, pour chaque process ni, un arbre de preuves canonique peut tre construit. Une des contributions majeures de cet article est de montrer que l'eecacitt et la ddcidabilitt du calcul des ssquents en logique linnaire dans le fragment multiplicatif mis en uvre ici peut tre utiliss aan de ddterminer les process nis d'un rrseau de Petri. partiels, Arbres de preuves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A rule-based evaluation of ladder logic diagram and timed petri nets for programmable logic controllers

This paper describes an evaluation through a case study by measuring a rule-based approach, which proposed for ladder logic diagrams and Petri nets. In the beginning, programmable logic controllers were widely designed by ladder logic diagrams. When complexity and functionality of manufacturing systems increases, developing their software is becoming more difficult. Thus, Petri nets as a high l...

متن کامل

Petri nets step transitions and proofs in partially commutative linear logic

We encode the execution of Petri nets in Partially Commutative Linear Logic, an intuitionistic logic introduced by Ph. de Groote which contains both commutative and non commutative connectives. We are thus able to faithfully represent the concurrent firing of Petri nets as long as it can be depicted by a series-parallel order. This coding is inspired from the description of context-free languag...

متن کامل

Provability in Intuitionistic Linear Logic from a New Interpretation on Petri nets

Linear logic is a logic of actions which seems well suited to various computer science applications. From its intrinsic ability to reeect computational resources, it is possible to reene diierent programming paradigms like formulae-as-types (proofs-as-programs) or formulae-as-states (proofs-as-computations) with a ner control on resource management. In the latter case, the correspondence betwee...

متن کامل

Petri Nets as Models of Linear Logic

The chief purpose of this paper is to appraise the feasibility of Girard’s linear logic as a specification language for parallel processes. To this end we propose an interpretation of linear logic in Petri nets, with respect to which we investigate the expressive power of the logic.

متن کامل

Towards a Linear Logic Based Calculus for Structural Modifications of Petri Nets

Object based Petri nets are becoming increasingly popular in many fields of computer science. The possibility to model real-world objects as separate Petri nets supports the need for modular design of complex systems. So far object net approaches have been based on the presumption that the object nets’ structure remains unchanged in all processes. This paper sheds some light on possible extensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007